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Reductions and Quantization 

Ivailo M. Mladenov ~'2 

Received April 12, 1989 

The interchangeability of the Marsden-Weinstein reduction procedure and the 
Kostant-Souriau geometric quantization is studied by detailed examination of 
a concrete dynamical system--the so-called MIC-Kepler problem. It is proved 
that some stages of reduction plus geometric quantization technique produce 
the complete quantum spectrum of the system, while others give part of it or 
nothing. 

1. INTRODUCTION 

In a sense the standard description of the classical dynamical system 
(P, w, H)  in terms of  a symplectic manifold (P, w) and a smooth function 
H on P (the Hamiltonian of the system) seems to be ideally suited for the 
transition to quantum mechanics. I have in mind the Kostant-Souriau 
geometric quantization scheme, which aims at an extension of the 
Schr6dinger quantization procedure to arbitrary symplectic manifolds. The 
objects involved in ordinary quantization get in this approach a geometrical 
interpretation and reflect the topology of the phase space. The starting point 
is the observation that the symplectic form w induces a Poisson bracket 
operation under which the smooth functions C ~  form a Lie algebra. 
The problem of constructing representations of this algebra was first raised 
by Dirac. When further a Lie group G acts symplectically (canonically) on 
the symplectic (phase space) manifold leaving the Hamiltonian H invariant, 
one says that we have a Hamiltonian system with symmetry (P, ~o, H, G). 
Moreover, when the action of  G is such that (P, w) is a Hamiltonian 
G-space, the representations of C ~ ( P )  provide a means of constructing 
representations of the Lie group G. If  (P, w) is viewed as the phase space 
of the classical Hamiltonian system with symmetry (P, w, H, G), they arise 
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in the process of quantizing this system. Classically the symmetries result 
in the appearance of constraints. Factoring out the symmetries, one gets 
the so-called reduced phase space (P . ,  to.) and the reduced dynamics on 
it described by the Marsden and Weinstein (1974) theorem (see Section 2 
for details). Thus, each Hamiltonian system with symmetry has two symplec- 
tic faces, the initial and reduced phase spaces (P, w) and (P . ,  to.), respec- 
tively. Of great importance is the absence of a formal distinction between 
working on (P, to) or (P . ,  to~) at the classical level. But these two representa- 
tions of one and the same mechanical system are not necessarily equivalent 
on the quantum level. The problem to correlate properly the quantization 
of extended and reduced phase space has still to be settled in general. For 
example, the geometric quantization of the extended and reduced phase 
spaces has been proved (Puta, 1984) to be equivalent within the cotangent 
bundle category where the starting and reduced phase spaces are cotangent 
bundles provided with their canonical symplectic structures. At the other 
extreme is the case when the symplectic manifold to be reduced is a compact 
Kaehler manifold (Guillemin and Sternberg, 1982). The real situation in 
mechanics is somewhere between, as when one starts with a cotangent 
bundle and then, after reduction, obtains either a compact Kaehler manifold 
or a cotangent bundle whose symplectic form is not the canonical one. 

Substantial progress toward clarifying the situation has already been 
made (Puta, 1984; Guillemin and Sternberg, 1982; Gotay, 1986; Blau, 1988), 
but one of  the problems is the lack of examples in which the corresponding 
physical systems are well understood. The purpose of this paper is to provide 
such a description in the case of the MIC-Kepler  problem. Studying 
its symplectic faces (T*]~4,~-~), (T*/~3,~-~.), ( P 1 x p I , ~ . ( E ) ) ,  and 
( T*R  +, dpr ^ dr), we find that geometric quantization fails to recognize them 
as unique. 

2. PRELIMINARIES 

In this section I collect the exact statements of reduction theorems and 
give a brief outline of geometric quantization program in the form needed 
later. Here I fix also notation and conventions. 

Tl,,eorem 1 (Marsden and Weinstein, 1974). Let (P, to) be a symplectic 
manifold on which a Lie group G acts symplectically and J: P--> 03* (the 
dual of the Lie algebra 03 of G) be an Ad*-equivariant moment map. 
Assume tha t /z  ~ 03* is a regular value of J and that the isotropy subgroup 
G .  acts freely and properly on J- l ( /z) .  Then P. = J ~(tx)/G. is a symplectic 
manifold with the symplectic form to. determined by 7r*to. = i'to, where 
7 r . : J - l ( / z ) - > P .  is the canonical projection and / ~ : J - ~ ( / z ) ~ P  is the 
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inclusion map. Let H:  P ~  R be G-invariant. A Hamiltonian flow on P .  is 
induced whose Hamiltonian H~, satisfies H ,  o 7r, = H .  i,. 

Remark 1. If the Hamiltonian system (P, to, H)  admits a symmetry 
group which commutes with (3, then (P , ,  to t ,  Hj,) preserves this symmetry. 

Theorem 2 (Kummer, 1981). Let P be a cotangent bundle T*M and 
G a one-parameter Lie group acting freely and properly on M. Let M ~ N = 
M~ G be the induced principal fiber bundle and 8 a connection one-form 
on it. The reduced manifold P~, is symplectomorphic to T * N  endowed with 
a symplectic form given by the canonical one plus a "magnetic term" tzr*dd 
(where rN is the canonical projection rN: T * N ~  N).  

A thorough discussion concerning the reduction of symplectic mani- 
folds and detailed examination of the classical examples from the modern 
point of  view can be found in Abraham and Marsden (1978), Marmo et al. 
(1985), and Libermann and Marie (1987). 

The geometric quantization scheme of Kostant (1970) and Souriau 
(1970) associates to any quantizable phase space (X, fl) a Hilbert space Y( 
and to a subalgebra of  the smooth functions on X quantum operators on 
;~. One says that the symplectic manifold is quantizable if [fU2~'] is in the 
image of  the map 

H2hech(X~ Z)-~ n2e Rham(X) 

where [. ] denotes the de Rham cohomology class. When X is a compact 
this (pre)quantum condition on the form ~ amounts to 

1 
f ~ c T /  for all o-2 ~ H2(X, 7/) (1) 

2~r J~ 

If  (X, FI) is quantizable, there exists a (prequantum) line bundle L ~ X  
whose Chern class is [~/2~r] equipped with a connection V whose curvature 
form is - i l l  and Hermitian inner product h ( . ,  �9 ) which is invariant under 
parallel transport. The Hilbert space ~ is built by the polarized section of 
the quantum line bundle Q-~ X, where Q = L |  N ~  2 and N ~  2 is the line 
bundle of  half-forms normal to the polarization F (which is supposed to 
be invariant [Xf, F]  c F).  

If 4,=s|  where s ~ F ( L ) ,  veF(N1F/2) and ~0~F(Q) are sections of 
the respective line bundles, then one associates to the classical observable 
f a quantum operator f acting on Yg by 

f(~9 ) = [ -  i X f -  O( Xy) + f ] s  @ v - is @ ~LF( Xf) v (2) 

Here Xf is the Hamiltonian vector field generated by f ( i (X f ) f l  = - d f ) ,  0 
is the potential one-form of II(dO = f~), and ~(Xj.) is the Lie derivative 
with respect to Xf. Complete exposition of geometric quantization can be 
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found in Simms and Woodhouse (1976), Sniatycki (1980), and Tuynman 
(1985). 

3. T H E  M I C - K E P L E R  P R O B L E M  

The MIC-Kepler problem (Iwai and Uwano, 1986; see also Mladenov 
and Tsanov, 1987) is the Hamiltonian system 

(T*/~ 3, ~ ,  H~) (3) 

where 

T*/~ 3 = {(q, p) 6 R 3 x R3; q # 0} 

f~.'= dO + or., 0 = ~. pj dqj, o" u = -/x/(2lql3)eokq~ dqj ^ dqk (4) 

g~  =�89 2, Iql 2 2 2 2 = q l + q 2 + q 3 = r  2, a , / x 6 R ,  a > 0  

This Hamiltonian system describes the motion of a charged particle in the 
presence of a Dirac monopole field B. = - / x q / r  3, a Newtonian potential 
- a / r ,  and a centrifugal potential/x2/2r 2. Further, I refer to this system as 
the MIC-Kepler problem, as McIntosh and Cisneros studied it first using 
a vector potential. It turns out that for E < 0, the energy level submanifolds 
H~1(E)  consist only of closed orbits. This implies the presence of"hidden" 
symmetry and "accidental" degeneracy of the energy spectrum. Actually, 
this "hidden" SO(4) symmetry of the Hamiltonian system ( r*/~ 3, ~)., H.)  
is generated by constants of motion 

L" = qxp+/xq/ r ,  A ~' = (L" x p + o l q / r ) / ( - 2 H , )  '/2 

which have an interpretation as total momentum and generalized Runge- 
Lenz vector. All this resembles the ordinary Kepler problem and in fact it 
can be viewed as a limit of the one-parameter family of deformations (Bates, 
1988). The standard Kepler problem (/x = 0) has been quantized geometri- 
cally by Simms (1973) and Mladenov and Tsanov (1985) in higher 
dimensions. 

Here, I apply the geometric quantization to extended and reduced 
phase spaces of the Hamiltonian system (4); which leads (surprisingly 
enough) to the same result which is the statement of the following theorem. 

Theorem 3. The discrete spectrum (bound states) of the MIC-Kepler 
problem (3) (ce and p~ fixed) consists of the energy levels 

EN=-ot2/2N 2, N=!~I+I,I~I+2,... (5) 
with multiplicities 

m(EN)-= N 2 - I  ~2 (6) 
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Theorem 3 will be proved in Sections 5 and 6, dealing with extended and 
reduced phase spaces, respectively. 

R e m a r k  2. Prequantization of (T*J~ 3, ~').~) selecting the integral sym- 
plectic forms produces immediately the magnetic charge quantization/x = 0, 
+I,  • 1 , . . .  (cf. Section 6). Unfortunately, the geometric quantization scheme 
as described in Section 2 cannot be applied, because there is no way to 
dispense with the use of an invariant polarization. 

R e m a r k  3. Extensions viewed as nonbijective transformations have 
been applied with great success by Kibler and Negadi (1984) to various 
problems in physics and chemistry (see also Davtyan et aL, 1987). 

R e m a r k  4. Gotay and Tuynman (1988) have proved that all symplectic 
manifolds can be obtained by means of a symplectic reduction of appropriate 
( R 2 " ,  (.Ocan). 

4. T H E  C O N F O R M A L  KEPLER P R O B L E M  AND 
ITS REDUCTION 

Let us start with the symplectic manifold 

T*/~ 4 = {(x, y) ~ R4x R 4, x ~ 0} (7) 

with the standard symplectic form 

4 
a = d y ^ d x :  Y dyj^ dxj (8) 

j= l  

Next, introduce three Hamiltonian functions on the phase space (T/~ 4, fl). 
First, the Hamiltonian of the conformal Kepler problem 

H = @[2_ 8o~)/8]x12, ~ a fixed positive constant (9) 

Second, the Hamiltonian of a harmonic oscillator 

K = (ly[2+A2]xlZ)/2, A an arbitrary positive constant (10) 

Third, a momentum Hamiltonian 

M : �89 - x2yl + x 3 Y 4 -  x4Y3) (11) 

Obviously, we have 

41xl~(H + a 2/8) = K - 4c~ 12) 

which means that the energy hypersurfaces H = E = - A 2 / 8  and K = 4 a  
coincide. Moreover, the flows defined by the Hamiltonians H and K on 
the level sets 

H I(E)=--K- ' (4a)  (13) 
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coincide up to a monotonic  change of parameter,  as there the corresponding 
Hamil tonian vector fields XH and XK satisfy 

41x12X. = x , ,  (14) 

For an arbitrary choice of  the positive constant A, introduce the complex 
coordinates 

Z l = A ( x l + i x 2 ) - i ( y l ' - } - i y 2 )  , z 2 = A ( x 3 + i x g ) - i ( y 3 " q - i y 4 )  

z3 = A ( x l  - ix2) - i ( y l  - iy2), z, = A (x3 - ix4) - i(y3 - iy4) 

In these coordinates T*/~ 4= C4\D, where 

D = {z 6 C 4, z I = -z3 ,  z2 = -z4} (15) 

and the symplectic form 12 is a multiple of  the standard Kaehler form on C a, 

i i 
dzj A d~j (16) f~ = --~ dz  ^ d~ = 4---s j=1 

the Hamil tonian functions K and M can also be easily expressed in these 
coordinates as 

g = ([Z 112+1z21 =+[z312+1z412)/4 (17) 

and 

M = (]zl]2 + Iz212- ]z312- Iz4]2)/8A (18) 

The Hamiltonians K and M as well as the symplectic form 12 are well 
defined on the manifold, 

~4 = C4\{0} :D T$/~ 4 (19) 

Denote by K, and Ms the flows of the Hamiltonian systems (~;4, ~ ,  K )  and 
(~4 a, M). 

L e m m a  1. For any z ~ ~;4 and s, t E R, we have 

K , z  = ( e iAt z l  , e iXtz2  , e i a t z 3  , e i X t z 4 )  (20) 
�9 " --is~2 M s z  = (e 'S/2Zl ,  e'S/2z2, e z3, e-iS/2a4) (21) 

In particular, the flows of all three Hamiltonians H, K, and M commute 
where defined. 

By Lemma 1 the flow M~ defines a symplectic action of the circle group 
U(1) on the manifold C4. The moment  map for this action is M itself. 
Note that the set D defined in (15) is invariant with respect to this U(1) 
action. Thus, T*/~ 4 is also invariant, as well as the Hamiltonian H, and we 
may apply Theorem 2 to reduce the Hamiltonian system (T*/~ 4, 12, H )  with 
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respect to the U(1) action (21). The result is the following proposition, 
established by Iwai and Uwano (1986) (see also Mladenov and Tsanov, 
1987). 

Proposition. Let/~ e R. Then 

M-~(I~)/U(1) ~ T*/~ 3 (22) 

and the reduction of the form ~ and the Hamiltonian H give f ~  and H~, 
i.e., the result of the reduction is the MIC-Kepler problem (3). 

Accordingly, constants of motion for the conformal Kepler problem 

M 1 = (Zl  ~2-.f- z2z  1 - z 3 z 4 -  z4z~3)/8A 

M 2  = ( z 1 z  2 - z221 + ZsZ 4 - z4zs)/SXi 

M3 = (Iz, I 2 -  [z212- Iz312 + Jr4] 2) /8a 

= (Z,Z2-~- Z2e I "~- Z3e4-~ Z4e3) /8 ,~  

: ( Z l e  2 -- Z2Z 1 -- Z3e4- {- Z4e3)/gAi 

= (Iz,I 2 -  Iz212 + Iz3r-Iz412)/8a 

constants of motion L ~, A ~ of the MIC-Kepler 

5. Q U A N T I Z A T I O N  OF THE EXTENDED PHASE SPACE 

Under the reduction the energy-momentum manifold 

rid(A, p,) = {(x, y) E T*/~4; K = 4a, M =/x} (23) 

is mapped by cry, onto the energy hypersurface H~ = -A2/8 [a = ( - 8 E )  ~/2] 
of the MIC-Kepler problem. In order that rid(A,/,) be nonempty, A and/~ 
must obey 

al ,l-<2  (24) 

In this section it is assumed that a l~ ] < 2a holds strongly. Comments on 
this point can be found in Section 6. Now let us change the point of view 
and look at ( T*/~ 4, ~)  as an extension of ( T*/~ 3, s ). Working with complex 
coordinates, choose the polarization F to be spanned by the antiholomor- 
phic directions {a/oe,, a/ae2, a/oe3, a/ae4} and adapted to it potential one- 
form 0 = - ( i /4A)~ dz. The Hilbert space Yg associated with the phase space 
(T*/~ 4, ~ )  consists of "wave functions" q, in the form ~p= ~ |  where 
is a holomorphic function and v = (dzl A dz2 A dz3 A dz4) '/2. 
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Essentially, the idea of Dirac's method of quantization in the presence 
of constraints in the phase space is that they must be enforced quantum 
mechanically if they have not been eliminated classically. Since the con- 
straints specifying the energy-momentum manifold ~(A, ~) are given by 
K = 4a, M =/~, it follows that the physically admissible quantum states are 
those which belong to the subspace ~ of ~ defined by 

~ = {4, c a~ ~ 4 ,  = 4o,4,, ~ 4 ,  = ~} 

Now, we have 

( 0  Oz---~2 + 0 0_ 0 _ 2 ) ~ |  v Oz4+ = A 2, az-7+ z2 z3 az3+ z4 

= A(2(+2)0 = 4aO, 2(=0,  1 ,2 , . . .  

1 (  0 0 0 0'~ 
- -  2 , 2 - - - - 2 3 - - - - 2 4 - -  / q~@v=/.t, o ]~hp = ~ , zt Ozl + Oz2 Oz3 Oz4/ 

where ~ is a homogeneous polynomial of degree 2(>-0 in z's. Introducing 
N = 2( /2+ 1 and solving 

2N(-8E)l/z=4oe 

one gets (5) as well 

nl + n2+ n3+ n4 = 2 N - 2  (25) 

nl+n2-n3-n4=21 x, ni>_O, i = 1 , 2 , 3 , 4  (26) 

which is equivalent to 

nl + n2 = N + / x  - 1 = 2 ( 1  ( 2 7 )  

/'/3-{- n 4 = N - /x  - 1 = 2(2 (28) 

By (26) the magnetic charge is quantized according to Dirac's prescription 

/z = 0, -4-�89 +1, + 3 , . . .  (29) 

Combined, (27) and (28) ensure that N =  I/xl+ 1, I j , ] + 2 , . . . .  To find the 
multiplicities m(EN), remark that ~ reduces to a product ~ ( z l ,  z2)~2(z3, z4) 
of homogeneous polynomials in two variables of degree 2(~, 2(2, respec- 
tively. The dimensionality of the Hilbert space Yg**.N is then 

m(EN) = (2(, + 1 ) ( 4 +  1) = N 2-/x 2 (30) 

Remark 5. The Hilbert space ~,,.u carries (2(~/2,2(2/2) unitary 
irreducible representations of SU(2) x SU(2) (ix half-integer) or SO(4) (/z 
integer). The wave functions within Y( = @ Yg,,N are labeled by four quantum 
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numbers which are eigenvalues of a complete set of commuting operators: 
h~/(/x), H ( N ) ,  A~/3(m), and A3(n), where 

1 /  O a a a \  
M3~' = = / Z l  - - -  z2 : - - -  z3 - : - -+  z4 - - /  0 = rag, 

2 \ OZ 1 OZ 2 OZ 3 OZ4.] 

~, 1/' a a a a'~ 
[ z~ - - -  z2 2--+ z3 :---- z4 ~---I O= nO m30 = ~ \ 07-1 dZ2 OZ3 024/ 

) 

6. Q U A N T I Z A T I O N  O F  T H E  O R B I T  M A N I F O L D  

As mentioned in Section 3, the energy level submanifolds H ~ ( E )  
consist only of closed orbits for E <0. Thus, one can factorize H-~(E) by 
the dynamical flow and the so-obtained manifold H~I(E) /U(1)  is called 
the orbit manifold U~ (E). Its structure is described by the following theorem. 

Theorem 4 (Mladenov and Tsanov, 1987). Let E < 0  and define A = 
( - 8 E )  1/2. Then: 

(i) If AI I<2=, then 6.(E)- PI• 1. 
(ii) If Al/x[=2ol, then ft.(E)---- P 1. 

(iii) If AI/x]>2a , then H-~1(E)= ~b. 
Moreover, the reduced symplectic form on U~(E) is 

2~-(2a + A/x )  27r(2c~ - A#) 
~ / ~ ( E )  - (.o14 to 2 (31) 

A A 

where 

i dzj A d~j 
wj = 2----~ (1 + Izjl2) 2' j = 1, 2 (32)  

for any pair of nonhomogeneous coordinates (zl, z2) on p1 x p1. 
The above theorem reduces the quantization of the MIC-Kepler prob- 

lem to the geometric quantization of the compact Kaehler manifold P~ x 
pl(p~). Applying the geometric quantization scheme to the orbit manifold 
U,(E)  amounts in quantum mechanical terms to the transition from the 
Schr6dinger to the Heisenberg picture, and, as we shall see seen, leads also 
to Theorem 3. The proof of Theorem 4 will not be reproduced here, as it 
can be found in Mladenov and Tsanov (1987). It is based on Lemma 2 
below and that is why I proceed to its formulation. By (20) and (21) the 
flows K,, M, define a Hamiltonian action of the torus U(1)x U(1) on ~;4. 
Denote by 

J: (~4->u*(1)xu*(1)~-R2 (33) 
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the associated momentum map of this action. Explicitly, we have 

J(z)  = (K(z) ,  M(z) )  

This is all we need for statement of the following lemma. 

to 

whence 

Mladenov 

Lemma 2. G~,(E) ~- J - ' ( 4 a , / Z ) / U ( 1 )  • U(1). 
Using (17) and (18), we see that the system K = 4a, M =/Z, is equivalent 

Iz112 + [z2[ 2 = 4(2a + A/z), Iz312+lZa12 = 4(2a -A/Z) (34) 

f! 
3 X S 3 

j - l ( 4a , /Z )  = 3 

Define a projection (two Hopf  maps) 

p: S3xS3--> P I x P  1 

by 

when Al/zl < 2 a  

when Al/zl = 2 a  

when A[/zl>2a 
(35) 

c 1 ( N ~ 2 )  = _�89 • pl)  = - ( [ to , ]  + [to2]) (38) 

The existence of prequantum line bundle L is obviously a condition on E, 
which determines the energy spectrum. 

We combine (1), (31), and (37) to obtain 

1 
27r Or (E)  = Nttol + N2to2 (39) 

for some integers N1, N2--> 1. 

H2(pIxp1, z ) = Z ~ Z  (37) 

and 

p(zl ,  z2, z3, z4) = ((Zl, z2), (z3, z4)) (36) 

where (Zl, Zz) and (z3, z4) are homogeneous coordinates on P l x  p1. The 
reduced symplectic form 12~(E) is computed by the definition given in 
Theorem 1, 

ptgg:aij. ( E ) = ~~ls3xs3 

The Kaehler forms to~, to2 defined in (32) generate H2(PI• p1, Z) (cf. 
Griffiths and Harris, 1978) 
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So we have that 

2a + a~  = AN 1 

2a - a / z  =AN2 

whence 

1 tz = ~ ( N 1 -  N2), A =4ee/(Nl+N2) (40) 

Introducing N = �89 + N2), we obtain N1 = N +/x, N2 = N - / z ,  where 
N -> l/z] + 1, and finally the energy spectrum (5) of the MIC-Kepler problem. 
The multiplicities of these levels m(EN) coincide with the dimensions of 
the spaces of holomorphic sections of the line bundles Q over P~ x P~. If 
QN -+ P~ • p1 is such a quantum bundle with 

Cl(QN) = (N1 - 1)[o91] + (N2 - 1)[6o2] 

then by the Riemann-Roch-Hirzebruch theorem for compact complex 
surfaces (Hirzebruch, 1966) and the Kodaira vanishing theorem (Griffiths 
and Harris, 1978) we have 

m(EN) = dim H ~  p1, QN) = N 1 N 2  = N2--I ~2  

Remark 6. Multiplicities can be found also by the methods of  enumera- 
tive geometry as done in Gaeta and Spera (1988) in the case N1 = N2. 

Members of the complete set of observables M3 and A3 survived under 
reduction to 0~(EN) can be expressed in nonhomogeneous coordinates 
(Zl,  Z2) = (Z2/Z1, Z4/a3) on  p1 • p1 as follows: 

M ~  ,N _ 

Al~  ,N  _ 

N1 l - [ z , [  2 N2 1-1,212 

2 l+]Zl[ 2 2 l+[z2[ 2 

N, 1-1z,I 2 N2 1-1z212 + 
2 l §  2 1§ 

The corresponding quantum operators h~/~ *'N and fi,~.N act on the sections 
of  the quantum line bundle QN ~- L ~ |  N2. Here Li (i = 1, 2) stand for the 
dual of the universal line bundle over the respective p1 factor in Uu(EN) 
and Ni is its tensor power. The holomorphic sections ~ i  c F(Li) of these 
line bundles span the carrier spaces of  spin si = NJ2  representations of 
SU(2) (cf. Remark 5). 

It is (at least mathematically) sensible to prequantize also the orbit 
manifold when ),[t,1 = 2a. Classically this is the energy level of the system 
which corresponds to the minimal value -~e / t ze  of the potential U~,(r)= 
1~2/ 2r2-- oe / r. 
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Curiously, the procedure gives once more the quantization of the 
magnetic charge obtained independently by the above argument [see (40) 
and Section 5]. 

R e m a r k  7. The MIC-Kepler  problem offers also the possibility to 
regularize the standard Kepler problem in a different way from that proposed 
in Moser (1970), Kummer (1982), Cordani (1986), and Vivarelli (1986). 
More details can be found in Mladenov and Tsanov (1987). 

R e m a r k  8. It turns out that the MIC-Kepler problem and the Taub-NUT 
problem with negative mass parameter are "hiddenly" symplectomorphic 
systems with identical degeneracies (Cordani et al., 1988). 

R e m a r k  9. Reducing (T*/~ 3, ~ ,  H~ ) with respect to the obvious SO(3) 
Hamiltonian actions, one gets (T*R +, dpr ^ dr, p ~ / 2 +  12/2r 2 -  co~r) but in 
this case geometric quantization does not provide any information about 
the spectrum. 

Beyond doubt, the reduction-quantization relationship is a challenge 
for the geometric quantization program and deserves further exploration 
in order to be made into a strong theory. 
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